资源类型

期刊论文 1560

年份

2024 1

2023 59

2022 104

2021 102

2020 77

2019 106

2018 89

2017 84

2016 68

2015 88

2014 83

2013 64

2012 82

2011 78

2010 75

2009 51

2008 71

2007 86

2006 35

2005 26

展开 ︾

关键词

风险分析 9

分析 4

可持续发展 4

对策 4

影响因素 4

数值模拟 4

隧道 4

ANSYS 3

数值分析 3

裂缝 3

2035年 2

BNLAS 2

COVID-19 2

DX桩 2

HIV感染孕产妇 2

“一带一路” 2

专利分析 2

仿真 2

制造业 2

展开 ︾

检索范围:

排序: 展示方式:

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 623-642 doi: 10.1007/s11709-021-0726-8

摘要: In this study, gradual and sudden reduction methods were combined to simulate a progressive failure in notched composite plates using a macro mechanics approach. Using the presented method, a progressive failure is simulated based on a linear softening law prior to a catastrophic failure, and thereafter, sudden reduction methods are employed for modeling a progressive failure. This combination method significantly reduces the computational cost and is also capable of simultaneously predicting the first and last ply failures (LPFs) in composite plates. The proposed method is intended to predict the first ply failure (FPF), LPF, and dominant failure modes of carbon/epoxy and glass/epoxy notched composite plates. In addition, the effects of mechanical properties and different stacking sequences on the propagation of damage in notched composite plates were studied. The results of the presented method were compared with experimental data previously reported in the literature. By comparing the numerical and experimental data, it is revealed that the proposed method can accurately simulate the failure propagation in notched composite plates at a low computational cost.

关键词: progressive failure     notched composite plate     Hashin failure criterion     macro mechanics approach     finite element method    

Surficial stability analysis of soil slope under seepage based on a novel failure mode

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 712-726 doi: 10.1007/s11709-021-0729-5

摘要: Normally, the edge effects of surficial landslides are not considered in the infinite slope method for surficial stability analysis of soil slopes. In this study, the limit stress state and discrimination equation of an infinite slope under saturated seepage flow were analyzed based on the Mohr-Coulomb strength criterion. Therefore, a novel failure mode involving three sliding zones (upper tension zone, middle shear sliding zone, and lower compression zone) was proposed. Accordingly, based on the limit equilibrium analysis, a semi-analytical framework considering the edge effect for the surficial stability of a soil slope under downslope seepage was established. Subsequently, the new failure mode was verified via a numerical finite element analysis based on the reduced strength theory with ABAQUS and some simplified methods using SLIDE software. The results obtained by the new failure mode agree well with those obtained by the numerical analysis and traditional simplified methods, and can be efficiently used to assess the surficial stability of soil slopes under rainwater seepage. Finally, an evaluation of the infinite slope method was performed using the semi-analytical method proposed in this study. The results show that the infinite slope tends to be conservative because the edge effect is neglected, particularly when the ratio of surficial slope length to depth is relatively small.

关键词: soil slope     seepage     surficial failure mode     stress state     edge effects    

Stability analysis of slopes with planar failure using variational calculus and numerical methods

Norly BELANDRIA, Roberto ÚCAR, Francisco M. LEÓN, Ferri HASSANI

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1262-1273 doi: 10.1007/s11709-020-0657-9

摘要: This study investigates the technique of variational calculus applied to estimate the slope stability considering the mechanism of planar failure. The critical plane failure surface should be determined because it theoretically indicates the most unfavorable plane to be considered when stabilizing a slope to rectify the instability generated by several statistically possible planes. This generates integrals that can be solved by numerical methods, such as the Newton Cotes and the finite differences methods. Additionally, a system of nonlinear equations is obtained and solved. The surface of the critical planar failure is determined by applying the condition of transversality in mobile boundaries, for which various examples are provided. The number of slices is varied in one of the examples, while the surface of the critical planar failure is determined in the others. Results are compared using analytical methods through axis rotations. All the results obtained by considering normal stress, safety factors, and critical planar failure are nearly the same; however, in this research, a study is carried out for “ ” number of slices using programming methods. Sub-routines are important because they can be applied in slopes with different geometry, surcharge, interstitial pressure, and pseudo-static load.

关键词: slopes stability     planar failure     variational calculus     numerical methods    

Analysis of stress and failure in rock specimens with closed and open flaws on the surface

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1222-1237 doi: 10.1007/s11709-021-0773-1

摘要: The influence of closed and open surface flaws on the stress distribution and failure in rock specimens is investigated. Heterogeneous finite element models are developed to simulate the compression tests on flawed rock specimens. The simulated specimens include those with closed flaws and those with open flaws on the surface. Systematic analyses are conducted to investigate the influences of the flaw inclination, friction coefficient and the confining stress on failure behavior. Numerical results show significant differences in the stress, displacement, and failure behavior of the closed and open flaws when they are subjected to pure compression; however, their behaviors under shear and tensile loads are similar. According to the results, when compression is the dominant mode of stress applied to the flaw surface, an open flaw may play a destressing role in the rock and relocate the stress concentration and failure zones. The presented results in this article suggest that failure at the rock surface may be managed in a favorable manner by fabricating open flaws on the rock surface. The insights gained from this research can be helpful in managing failure at the boundaries of rock structures.

关键词: surface flaw     heterogeneity     circular hole     numerical modeling     relative displacement    

Total stress rapid drawdown analysis of the Pilarcitos Dam failure using the finite element method

Daniel R. VANDENBERGE

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 115-123 doi: 10.1007/s11709-014-0249-7

摘要: Rapid drawdown is a critical design condition for the upstream or riverside slope of earth dams and levees. A new total stress rapid drawdown method based on finite element analysis is used to analyze the rapid drawdown failure that occurred at Pilarcitos Dam in 1969. Effective consolidation stresses in the slope prior to drawdown are determined using linear elastic finite element analysis. Undrained strengths from isotropically consolidated undrained (ICU) triaxial compression tests are related directly to the calculated consolidation stresses and assigned to the elements in the model by interpolation. Two different interpretations of the undrained strength envelope are examined. Strength reduction finite element analyses are used to evaluate stability of the dam. Back analysis suggests that undrained strengths from ICU tests must be reduced by 30% for use with this rapid drawdown method. The failure mechanism predicted for Pilarcitos Dam is sensitive to the relationship between undrained strength and consolidation stress.

关键词: rapid drawdown     finite element     total stress     slope stability    

Dynamic failure analysis on granite under uniaxial impact compressive load

ZHAI Yue, MA Guowei, HU Changming, ZHAO Junhai

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 253-260 doi: 10.1007/s11709-008-0042-6

摘要: High strain-rate uniaxial compressive loading tests were produced in the modified split Hopkinson pressure bar (SHPB) with pulse shaper on granite samples. It was shown that the failure of the granite cylinder was typical tensile splitting failure mode by sudden splitting parallel to the direction of uniaxial compressive loading at different strain rates. Besides, it was concluded that not only the strength of granite increased, but also the fragment size decreased and the fragment numbers increased with the increasing strain rate. To quantitatively analyze the failure phenomena, the numerical calculation based on a dynamic interacting sliding microcrack model was adopted to investigate the influence of microcrack with the different initial crack length, crack angle, crack space and friction coefficient on the macro-mechanical properties of granite under different strain rates. Accordingly, the strain-dependency of the compression strength and the fragmentation degree of granite was explained reasonably.

关键词: numerical calculation     coefficient     cylinder     splitting parallel     strain-dependency    

Experimental analysis on strength and failure modes of wood beam-column connections

Zhenhua HUANG,Sheldon Q SHI,Liping CAI

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 260-269 doi: 10.1007/s11709-014-0261-y

摘要: This research experimentally examined the strength, failure modes, and behaviors of dowel-bearing and fiber-bearing wood beam-column connections and explored the effects of cyclic loading on the strength, failure modes, and behaviors of those connections. Base on limited numbers of exploratory laboratory tests (6 preliminary tests in total), the authors observed that the typical bolted connection (dowel-bearing type wood beam-column connection with fiber-bearing surfaces) showed good behavior (large peak moment) under the monotonic loads, and the tenon joint connection (fiber-bearing wood beam-column connection) showed good behavior under cyclic loads. The cyclic property of loading reduced the strength of the dowel-bearing type wood beam-column connections, but increased the strength of fiber-bearing type wood beam-column connections. More importantly, the authors identified a possible location of safety concern in current national design specifications (NDS) standards for the typical bolted connection (dowel-bearing connection with fiber bearing surface) under cyclic loading because the tested value was smaller than the NDS calculated value. But, because of the small amount of tests conducted, no final conclusion can be drawn based on those preliminary observations yet. A large number of repetitive laboratory tests should be conducted.

关键词: wood     connection     dowel-bearing     fiber-bearing    

Finite element analysis of stress concentrations and failure criteria in composite plates with circular

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 281-294 doi: 10.1007/s11465-014-0307-9

摘要:

In this study, the stress concentration factors (SCF) in cross-and-angle-ply laminated composite plates as well as in isotropic plates with single circular holes subjected to uniaxial loading is studied. A quadrilateral finite element of four-node with 32 degrees of freedom at each node, previously developed for the bending and mechanical buckling of laminated composite plates, is used to evaluate the stress distribution in laminated composite plates with central circular holes. Based up on the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical results obtained by the present element compare favorably with those obtained by the analytic approaches published in literature. It is observed that the obtained results are very close to the reference results, which demonstrates the accuracy of the present element. Additionally, to determine the first ply failure (FPF) of laminated plate, several failure criterions are employed. Finally, to show the effect of ratio on the failure of plates, a number of figures are given for different fiber orientation angles.

关键词: laminated composite plates     stress concentration     geometric singularity     anisotropic effect    

Optimization of the mechanical performance and damage failure characteristics of laminated composites

《结构与土木工程前沿(英文)》   页码 1357-1369 doi: 10.1007/s11709-023-0996-4

摘要: In this study, the effect of fiber angle on the tensile load-bearing performance and damage failure characteristics of glass composite laminates was investigated experimentally, analytically, and numerically. The glass fabric in the laminate was perfectly aligned along the load direction (i.e., at 0°), offset at angles of 30° and 45°, or mixed in different directions (i.e., 0°/30° or 0°/45°). The composite laminates were fabricated using vacuum-assisted resin molding. The influence of fiber orientation angle on the mechanical properties and stiffness degradation of the laminates was studied via cyclic tensile strength tests. Furthermore, simulations have been conducted using finite element analysis and analytical approaches to evaluate the influence of fiber orientation on the mechanical performance of glass laminates. Experimental testing revealed that, although the composite laminates laid along the 0° direction exhibited the highest stiffness and strength, their structural performance deteriorated rapidly. We also determined that increasing the fiber offset angle (i.e., 30°) could optimize the mechanical properties and damage failure characteristics of glass laminates. The results of the numerical and analytical approaches demonstrated their ability to capture the mechanical behavior and damage failure modes of composite laminates with different fiber orientations, which may be used to prevent the catastrophic failures that occur in composite laminates.

关键词: fiber orientation     composite laminates     stiffness degradation     analytical approaches     finite element analysis    

Geotechnical forensic investigation of a slope failure on silty clay soil—A case study

Mohammad Abubakar NAVEED, Zulfiqar ALI, Abdul QADIR, Umar Naveed LATIF, Saad HAMID, Umar SARWAR

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 501-517 doi: 10.1007/s11709-020-0610-y

摘要: Qila Bala Hisar is one of the noteworthy places of Peshawar, Khyber Pakhtunkhwa. The fort was constructed on a filled ground during the 18th century and it was renovated several times by the occupants ever since. Recently, due to an earthquake of magnitude 7.3, the upper part of the south-western wall of the fort collapsed. The collapse of the wall was attributed to the failure of the retained slope. This research was undertaken to characterize the slope material, study causal factors of failure and evaluate remedial strategy. The investigation involved conventional field and laboratory testing and geophysical investigation using electrical resistivity technique to evaluate the nature of stratum. Also, X-ray Diffraction and Scanning Electron Microscopy was used to study the slope material at a molecular level to evaluate the existence of swelling potential. The analysis has shown that excessive seepage of water caused by the poor maintenance of runoff and sewage drains is the causal factor triggered by the seismic event. A remedial strategy involving soil nails, micro piles and improvement of the surface drainage is recommended.

关键词: forensic geotechnical investigation     slope failure     slope analysis     finite element method     numerical analysis     seismic loading     Qila Bala Hisar    

Application of metal magnetic memory test in failure analysis and safety evaluation of vessels

Yiliang ZHANG, Song YANG, Xuedong XU

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 40-48 doi: 10.1007/s11465-009-0003-3

摘要: Metal magnetic memory test (MMMT), which is a new subject in the field of nondestructive examination, can determine regions of stress concentration by testing the distribution of the magnetic field of metal structures so as to effectively diagnose premature defects. MMMT and other test methods are applied in the study to put a propylene purifier of a temperature-jump accident and a leaked ammonia vessel through safety evaluation. Results are as follows: The margin of safety declines after the purifier is overburnt; several stress concentrations are observed within the overburnt area and the level of stress concentration rises after one-month operation; and overpressure operation of the purifier must be strictly avoided and carefully monitored during later operation. Cracks are observed on the ammonia vessel after one year’s service. Extremely high residual stress is the primary cause of cracks. After four years in service, the residual stresses existing in the area of the base metal and weld zone are still greater than 0.5 , which results in numerous cracks due to stress corrosion. From the MMMT result of the ammonia vessel’s defects, it can be seen that the derivative of magnetic density (d p/d ) is an important reference variable. Within the 31 leakage points, 67.7% of them whose dHp/dx values are more than 10, and 96.8% of them whose dHp/dx values are more than 8.

关键词: Metal magnetic memory test (MMMT)     nondestructive testing (NDT)     residual stress     propylene purifier     ammonia vessel    

Seepage failure by heave in sheeted excavation pits constructed in stratified cohesionless soils

Serdar KOLTUK, Jie SONG, Recep IYISAN, Rafig AZZAM

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1415-1431 doi: 10.1007/s11709-019-0565-z

摘要: In this study, experimental and numerical investigations are performed to clarify the seepage failure by heave in sheeted excavation pits in stratified cohesionless soils in which a relatively permeable soil layer ( ) lies above a less permeable soil layer ( ) between excavation base and wall tip. It is shown that the evaluation of base stabilities of excavation pits against seepage failure by using Terzaghi and Peck’s approach leads to considerably lower critical potential differences than those obtained from the model tests. On the other hand, a relatively good agreement is achieved between the results of the model tests and the finite element (FE) analyses. Further investigations are performed by using axisymmetric excavation models with various dimensions and ground conditions, and a comparison between the results obtained from Terzaghi and Peck’s approach and finite element analyses is given.

关键词: seepage failure by heave     cohesionless stratified soil     model test     Terzaghi and Peck’s approach     FE analysis    

Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios

Behrouz BEHNAM, Fahimeh SHOJAEI, Hamid Reza RONAGH

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 904-917 doi: 10.1007/s11709-019-0525-7

摘要: Investigating progressive collapse of tall structures under beam removal scenarios after earthquake is a complex subject because the earthquake damage acts as an initial condition for the subsequent scenario. An investigation is performed here on a 10 story steel moment resisting structure designed to meet the life safety level of performance when different beam removal scenarios after earthquake are considered. To this end, the structure is first subjected to the design earthquake simulated by Tabas earthquake acceleration. The beam removal scenarios are then considered at different locations assuming that both ends connections of the beam to columns are simultaneously detached from the columns; thus the removed beam falls on the underneath floor with an impact. This imposes considerable loads to the structure leading to a progressive collapse in all the scenarios considered. The results also show that the upper stories are much more vulnerable under such scenarios than the lower stories. Hence, more attention shall be paid to the beam-to-column connections of the upper stories during the process of design and construction.

关键词: progressive collapse     tall steel moment-resisting frames     non-linear dynamic analysis     beam-removal scenario     impact    

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 15-37 doi: 10.1007/s11709-018-0465-7

摘要: In this study, the air blast response of the concrete dams including dam-reservoir interaction and acoustic cavitation in the reservoir is investigated. The finite element (FE) developed code are used to build three-dimensional (3D) finite element models of concrete dams. A fully coupled Euler-Lagrange formulation has been adopted herein. A previous developed model including the strain rate effects is employed to model the concrete material behavior subjected to blast loading. In addition, a one-fluid cavitating model is employed for the simulation of acoustic cavitation in the fluid domain. A parametric study is conducted to evaluate the effects of the air blast loading on the response of concrete dam systems. Hence, the analyses are performed for different heights of dam and different values of the charge distance from the charge center. Numerical results revealed that 1) concrete arch dams are more vulnerable to air blast loading than concrete gravity dams; 2) reservoir has mitigation effect on the response of concrete dams; 3) acoustic cavitation intensify crest displacement of concrete dams.

关键词: air blast loading     concrete dams     finite element     dam-reservoir interaction     cavitation     concrete damage model    

A study on bearing characteristic and failure mechanism of thin-walled structure of a prefabricated subway

Lianjin TAO; Cheng SHI; Peng DING; Sicheng LI; Shang WU; Yan BAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 359-377 doi: 10.1007/s11709-022-0816-2

摘要: In order to study the bearing performance of a new type of prefabricated subway station structure (PSSS), firstly, a three-dimensional finite element model of the PSSS was established to study the nonlinear mechanics and deformation performance. Secondly, the bearing mechanism of a PSSS was investigated in detail. Finally, the development law of damages to a thin-walled prefabricated component and the failure evolution mechanism of a PSSS were discussed. The results showed that this new type of the PSSS had good bearing capacity. The top arch structure was a three-hinged arch bearing system, and the enclosure structure and the substructure were respectively used as the horizontal and vertical support systems of the three-hinged arch structure to ensure the integrity and stability of the overall structure. Moreover, the tongue-and-groove joints could effectively transmit the internal force between the components and keep the components deformed in harmony. The rigidity degradation of the PSSS caused by the accumulation of damages to the spandrel, hance, arch foot, and enclosure structure was the main reason of its loss of bearing capacity. The existing thin-walled components design had significant advantages in weight reduction, concrete temperature control, components hoisting, transportation and assembly construction, which achieved a good balance between safety, usability and economy.

关键词: prefabricated subway station     thin-walled components     finite element analysis     bearing characteristic     failure mechanism    

标题 作者 时间 类型 操作

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

期刊论文

Surficial stability analysis of soil slope under seepage based on a novel failure mode

期刊论文

Stability analysis of slopes with planar failure using variational calculus and numerical methods

Norly BELANDRIA, Roberto ÚCAR, Francisco M. LEÓN, Ferri HASSANI

期刊论文

Analysis of stress and failure in rock specimens with closed and open flaws on the surface

期刊论文

Total stress rapid drawdown analysis of the Pilarcitos Dam failure using the finite element method

Daniel R. VANDENBERGE

期刊论文

Dynamic failure analysis on granite under uniaxial impact compressive load

ZHAI Yue, MA Guowei, HU Changming, ZHAO Junhai

期刊论文

Experimental analysis on strength and failure modes of wood beam-column connections

Zhenhua HUANG,Sheldon Q SHI,Liping CAI

期刊论文

Finite element analysis of stress concentrations and failure criteria in composite plates with circular

null

期刊论文

Optimization of the mechanical performance and damage failure characteristics of laminated composites

期刊论文

Geotechnical forensic investigation of a slope failure on silty clay soil—A case study

Mohammad Abubakar NAVEED, Zulfiqar ALI, Abdul QADIR, Umar Naveed LATIF, Saad HAMID, Umar SARWAR

期刊论文

Application of metal magnetic memory test in failure analysis and safety evaluation of vessels

Yiliang ZHANG, Song YANG, Xuedong XU

期刊论文

Seepage failure by heave in sheeted excavation pits constructed in stratified cohesionless soils

Serdar KOLTUK, Jie SONG, Recep IYISAN, Rafig AZZAM

期刊论文

Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios

Behrouz BEHNAM, Fahimeh SHOJAEI, Hamid Reza RONAGH

期刊论文

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

期刊论文

A study on bearing characteristic and failure mechanism of thin-walled structure of a prefabricated subway

Lianjin TAO; Cheng SHI; Peng DING; Sicheng LI; Shang WU; Yan BAO

期刊论文